Mass spectrometric characterization of circulating covalent protein adducts derived from a drug acyl glucuronide metabolite: multiple albumin adductions in diclofenac patients.

نویسندگان

  • Thomas G Hammond
  • Xiaoli Meng
  • Rosalind E Jenkins
  • James L Maggs
  • Anahi Santoyo Castelazo
  • Sophie L Regan
  • Stuart N L Bennett
  • Caroline J Earnshaw
  • Guruprasad P Aithal
  • Ira Pande
  • J Gerry Kenna
  • Andrew V Stachulski
  • B Kevin Park
  • Dominic P Williams
چکیده

Covalent protein modifications by electrophilic acyl glucuronide (AG) metabolites are hypothetical causes of hypersensitivity reactions associated with certain carboxylate drugs. The complex rearrangements and reactivities of drug AG have been defined in great detail, and protein adducts of carboxylate drugs, such as diclofenac, have been found in liver and plasma of experimental animals and humans. However, in the absence of definitive molecular characterization, and specifically, identification of signature glycation conjugates retaining the glucuronyl and carboxyl residues, it cannot be assumed any of these adducts is derived uniquely or even fractionally from AG metabolites. We have therefore undertaken targeted mass spectrometric analyses of human serum albumin (HSA) isolated from diclofenac patients to characterize drug-: derived structures and, thereby, for the first time, have deconstructed conclusively the pathways of adduct formation from a drug AG and its isomeric rearrangement products in vivo. These analyses were informed by a thorough understanding of the reactions of HSA with diclofenac AG in vitro. HSA from six patients without drug-: related hypersensitivities had either a single drug-: derived adduct or one of five combinations of 2-8 adducts from among seven diclofenac N-acylations and three AG glycations on seven of the protein's 59 lysines. Only acylations were found in every patient. We present evidence that HSA modifications by diclofenac in vivo are complicated and variable, that at least a fraction of these modifications are derived from the drug's AG metabolite, and that albumin adduction is not inevitably a causation of hypersensitivity to carboxylate drugs or a coincidental association.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highlighted Papers Circulating Protein Adducts in Diclofenac Patients

Covalent protein modifications by electrophilic acyl glucuronide (AG) metabolites are hypothetical causes of hypersensitivity reactions associated with certain carboxylate drugs. The complex rearrangements and reactivities of drug AG have been defined in great detail, and protein adducts of carboxylate drugs, such as diclofenac, have been found in the liver and plasma of animals and humans. Thi...

متن کامل

Development of an in vitro screening model for the biosynthesis of acyl glucuronide metabolites and the assessment of their reactivity toward human serum albumin.

An in vitro screening model was developed to determine the reactivity of acyl glucuronide metabolites from carboxylic drugs. This assay is composed of two phases. The first is a phase of biosynthesis of acyl glucuronides by human liver microsomes (HLM). The second, during which acyl glucuronides are incubated with human serum albumin (HSA), consists of assessing the reactivity of acyl glucuroni...

متن کامل

Mechanisms for covalent binding of benoxaprofen glucuronide to human serum albumin. Studies By tandem mass spectrometry.

Tandem MS has been used to establish the structure and specific binding sites of covalent protein adducts formed upon incubation of the acyl glucuronide of the propionic acid nonsteroidal anti-inflammatory drug benoxaprofen with human serum albumin in vitro. Benoxaprofen 1-O-beta-glucuronide was enzymatically synthesized in vitro and incubated with human serum albumin both in the presence and i...

متن کامل

Acyl glucuronide reactivity in perspective: biological consequences.

The metabolic conjugation of exogenous and endogenous carboxylic acid substrates with endogenous glucuronic acid, mediated by the uridine diphosphoglucuronosyl transferase (UGT) superfamily of enzymes, leads to the formation of acyl glucuronide metabolites. Since the late 1970s, acyl glucuronides have been increasingly identified as reactive electrophilic metabolites, capable of undergoing thre...

متن کامل

Selective protein adduct formation of diclofenac glucuronide is critically dependent on the rat canalicular conjugate export pump (Mrp2).

Previous work demonstrates that the reactive acyl glucuronide of the nonsteroidal antiinflammatory drug diclofenac forms selective protein adducts in the liver, which may play a causal role in the pathogenesis of diclofenac-associated liver toxicity. Because glucuronide conjugates can be exported into the bile, we explored the role of diclofenac glucuronide hepatobiliary transport in the format...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 350 2  شماره 

صفحات  -

تاریخ انتشار 2014